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Abstract— The spread of a cascading failure through a
network is an issue that comes up in many domains — in
the contagious failures that spread among financial institu-
tions during a financial crisis, through nodes of a power
grid or communication network during a widespread outage,
or through a human population during the outbreak of an
epidemic disease. Here we study a natural model of threshold
contagion: each node v is assigned a numerical threshold `(v)
drawn independently from an underlying distribution µ, and
v will fail as soon as `(v) of its neighbors fail. Despite the
simplicity of the formulation, it has been very challenging
to analyze the failure processes that arise from arbitrary
threshold distributions; even qualitative questions concerning
which graphs are the most resilient to cascading failures in
these models have been difficult to resolve.

Here we develop a set of new techniques for analyzing
the failure probabilities of nodes in arbitrary graphs under
this model, and we compare different graphs G according
to their µ-risk, defined as the maximum failure probability
of any node in G when thresholds are drawn from µ. We
find that the space of threshold distributions has a surprisingly
rich structure when we consider the risk that these thresholds
induce on different graphs: small shifts in the distribution of
the thresholds can favor graphs with a maximally clustered
structure (i.e., cliques), those with a maximally branching
structure (trees), or even intermediate hybrids.

1. INTRODUCTION

The resilience of networks to various types of failures
is an undercurrent in many parts of graph theory and
network algorithms. For example, the definitions of cuts
and expansion each capture types of robustness in the
presence of worst-case edge or node deletion, while the
study of network reliability is based on the question
of connectivity in the presence of probabilistic edge
failures, among other issues.

In this paper we are interested in the resilience
of networks in the presence of cascading failures —
failures that spread from one node to another across the
network structure. One finds such cascading processes
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at work in the kind of contagious failures that spread
among financial institutions during a financial crisis [1],
in the breakdowns that spread through nodes of a power
grid or communication network during a widespread
outage [3], or in the course of an epidemic disease as
it spreads through a human population [2].

To represent cascading failures we use the following
basic threshold cascade model, which has been studied
extensively both in the context of failures and also in
other settings involving social or biological contagion
[6], [8], [9], [10], [11], [12], [13], [14].1 We are given
a graph G, and each node v chooses a threshold `(v)
independently from a distribution µ on the natural
numbers, choosing threshold `(v) = j with probability
µ(j). The quantity `(v) represents the number of failed
neighbors that v can withstand before v fails as well —
thus we can think of µ as determining the distribution
of levels of “health” of the nodes in the population, and
hence implicitly controlling the way the failure process
spreads on G. To determine the outcome of the failure
process, we first declare all nodes with threshold 0 to
have failed. We then repeatedly check whether any node
v that has not yet failed has at least `(v) failed neighbors
— if so, we declare v to have failed as well, and we
continue iterating. For example, Figure 1 shows the
outcome of this process on two different graphs G with
particular choices of node thresholds.

For a given node r in G, we define its failure
probability fµ(G, r) to be the probability it fails when
node thresholds `(v) are drawn independently from µ
and then the threshold cascade model is run with these
thresholds. Now we let f∗µ(G) = supr∈V (G) fµ(G, r),
namely, the maximum failure probability in G. We view
f∗µ(G) as our measure of the resilience of G against
cascading failures that operate under the threshold dis-
tribution µ; accordingly, we refer to f∗µ(G) as the µ-risk
of G, and we seek graphs of low µ-risk.

A Motivating Contrast: Cliques and Trees:
How do different network structures compare in their

1The threshold cascade model is also related to the nonlinear voter
model [7], though somewhat different in its specifics.



resilience to a cascading failure? Because the failure
probability clearly goes up as we add edges to a given
node set, we take the top-level issue of edge density
out of consideration by posing this question over the
set of all (finite or infinite) connected d-regular graphs,
for a fixed choice of d. We use Gd to denote this set of
graphs, and for graphs in Gd we ask how they compare
according to their µ-risk.2 When we consider Gd, we
will also restrict the threshold distributions to the set
of all distributions supported on {0, 1, 2, . . . , d}, a set
which we denote by Γd.3

As a first concrete example of the kind of results
to come, we consider a comparison between two basic
d-regular graphs; the analysis justifying this compari-
son will follow from the framework developed in the
paper. To begin with, for conjecturing structures that
produce low µ-risk, we can draw on intuitions from the
motivating domains discussed above. A standard notion
in epidemic disease is that it is dangerous to belong
to a large connected component, and this suggests the
clique Kd+1 as a resilient network. On the other hand, a
principle in financial networks is that it is important to
have diversity among one’s neighbors — in the present
context, a lack of edges among one’s neighbors — so
that shocks are uncorrelated. This suggests the infinite
complete d-ary tree Td as a resilient network. (By way
of illustration, note that if we were to continue the tree
in Figure 1(b) indefinitely downward, we would have
the complete 3-ary tree T3.)

An intriguing point, of course, is that these two
sources of intuition point in completely opposite di-
rections. But as one consequence of the framework
we develop here (in Section 4) we will see that both
intuitions are essentially correct — each of Kd+1 or Td
can be better than the other, for different choices of the
threshold distribution. Specifically, we will show that
there exist µ, ν ∈ Γd such that f∗µ(Kd+1) < f∗µ(Td)
and f∗ν (Td) < f∗ν (Kd+1).

In fact, this trade-off between cliques and trees shows
up in instructive ways on very simply parametrized
subsets of the space Γd. For example, suppose we
choose a very small value ε > 0, and for a variable
x we define (µ(0), µ(1), µ(2)) = (ε, x, 1− ε− x) with
µ(j) = 0 for j > 2. Then when x = 1 − ε, so that all

2Unless explicitly noted otherwise, all quantification over graphs
in this paper takes place over the set of connected graphs only. This
does not come at any real loss of generality, since the µ-risk of a
disconnected graph is simply the supremum of the µ-risk in each
connected component.

3One can consider distributions supported on the larger set
{0, 1, . . . , d + 1}, with a node threshold `(v) = d + 1 indicating
that v is impervious to failure. None of our results would be affected
in any significant way by this modification.
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Figure 1. The spread of failures on two graphs according to the
threshold cascade model. On each graph, the thresholds are drawn
inside the nodes, and the nodes with thick borders are those that fail
as a result of the process.

thresholds are either 0 or 1, a node’s failure probability
is strictly increasing in the size of the component it
belongs to, and so Kd+1 uniquely minimizes the µ-risk.
At the other extreme, when x = 0, a short argument
shows that Kd+1 uniquely optimizes the µ-risk here too.
But as we prove in Section 5.1, it is possible to choose
a value of x strictly between 0 and 1 − ε for which
Td has strictly lower µ-risk than Kd+1. Moreover, the
value of x where Td has lower µ-risk accords with the
financial intuition about the value of diversity: it occurs
when x is very small, but significantly larger than ε,
so that thresholds of 1 are much more numerous than
thresholds of 0. In this case, failures are still rare, but if
a node u has connected neighbors v and w, then there
is a non-trivial risk that v will have threshold 0 and w
will have threshold 1, at which point v’s failure will
ricochet off w and bring down u as well, even if u has
the maximum (and most likely) threshold of 2. In this
region of the space Γd of threshold distributions, it is
safer to have no links among your neighbors, even at the
expense of producing very large connected components.

There is also an important qualitative message under-
lying this contrast: the question of which graph is more
resilient against cascading failures depends sensitively
on the way in which failure moves through the graph
(via the mixture of thresholds determined by µ).

This contrast, and the reasons behind it, suggest that
the space Γd has a rich structure when viewed in terms
of the µ-risk it induces on graphs. Indeed, as we’ve
just seen, even monotonic trade-offs between simple
parameters of µ ∈ Γd can produce non-monotonic
transitions between graphs — for example, with Kd+1



first being better, then worse, then better again compared
to Td as we vary x above.

Our overall plan in this paper is thus to develop
techniques for relating differences in µ-risk to the
structures of the underlying graphs. This is challenging
in large part because, despite the simplicity of its
formulation, the threshold cascade model has been very
hard to analyze for arbitrary graphs G and arbitrary
threshold distributions µ. Existing results have either
made the strong assumptions that µ obeys a diminishing
property (that threshold probabilities exhibit some form
of monotonic decrease in the threshold size) [10], [12]
or that the underlying graph G is a tree [8], [14],
a lattice [7], or a complete graph [9], [13]. In fact,
even the existing techniques developed specifically for
cliques and trees do not appear strong enough to identify
the contrast discussed above, which emerges from our
framework in Section 5.1. And for comparing graphs
outside these special cases, very few tools are available;
one of our motivating goals is to develop such tools.

It is also worth noting that the large literature on edge
percolation, in which propagation happens along edges
that are included independently at random with some
probability p, deals with a particular class of models
that — when viewed in terms of thresholds — have
the diminishing property discussed above. This includes
the large literature on Gn,p, viewed as random edge
sets of the complete graph [5]; the authors’ own recent
work on network formation in the presence of contagion
exclusively used a model based on this type of edge
percolation [4]. The point is that for this special case,
component size is the dominant effect, and so the graphs
of minimum µ-risk are essentially cliques; working in
this part of the space thus does not enable one to look at
trade-offs between “open” and “closed” neighborhoods
as in our motivating discussion of Kd+1 vs. Td. (As
we will see, the constructions of µ ∈ Γd that favor
Td indeed involve thresholds with a sharply increas-
ing property over part of the support set; for certain
applications, this increasing property is often viewed
as crucial, which accords with the intuition discussed
earlier.) Hence we need to look beyond models with
an edge percolation structure to see things that even
qualitatively resemble the phenomena we wish to study.

Summary of Results: The contrast between Kd+1

and Td establishes that there is no single graph H such
that H achieves the minimum µ-risk for all distributions
µ ∈ Γd. It is thus natural to ask whether Kd+1 and Td
are sufficient to jointly “cover” the space Γd, in the
sense that at least one of them is optimal at each µ ∈
Γd. More generally, we say that a (finite or infinite) set

of graphs H = {H1, H2, . . .} ⊆ Gd is a sufficient set
for Γd if for each µ ∈ Γd, at least one member of H
achieves the minimum µ-risk over all graphs in Gd. In
this terminology, our question becomes:

(∗) Does {Kd+1, Td} form a sufficient set for Γd?

One consequence of the results in the paper is a
complete answer to Question (∗). We find, in fact, that
the answer to this question depends on the value of d.

We begin with a fairly complete analysis of µ-risk
for the case of degree d = 2, answering Question (∗)
affirmatively in this case. While the set of graphs in
G2 is clearly very simple (cycles of each length ≥ 3,
and the infinite path), the behavior of µ-risk on G2 is
still rich enough that the non-monotonic phenomenon
discussed above takes place even between K3 and T2.
(Observe that T2, the infinite 2-ary tree, is better known
as the infinite path). We find in fact that at each µ with
0 < µ(0) < 1, at least one of K3 or T2 achieves strictly
lower µ-risk than every other graph in G2 − {K3, T2}.

When d > 2, the behavior of µ-risk on Gd becomes
much more complicated. Here we establish that for
each d > 2, the two graphs {Kd+1, Td} do not form
a sufficient set for Γd. We do this by considering a
graph that we call the (d-regular) tree of triangles
∆d, consisting essentially of a collection of triangles
attached according to the structure of an infinite regular
tree. (∆d is specified precisely in Section 5.2, and
depicted schematically for the cases d = 3 and d = 4
in Figure 2). We construct a distribution µ ∈ Γd for
which ∆d has strictly lower µ-risk than both Kd+1

and Td. Intuitively, the tree of triangles “interpolates”
between the complete neighborhood diversification of
Td and the complete neighborhood closure of Kd+1,
and hence points toward a further structural dimension
to the problem of minimizing µ-risk.

Despite the complex structure of µ-risk when d > 2,
we have a set of results making it possible to compare
the µ-risk of certain specific graphs to the µ-risk of
arbitrary graphs. In addition to the comparisons among
Kd+1, Td, and ∆d described above, we establish the
following further results for Kd+1 and Td. First, as
noted above, it is not hard to show that there are
distributions µ ∈ Γd for which Kd+1 has strictly lower
µ-risk than any other G ∈ Gd. A much more intricate
argument establishes a type of optimality property for
Td as well: for each graph G ∈ Gd, we construct a
distribution µG ∈ Γd for which Td has strictly lower
µG-risk than G. This is a broad generalization of the
Td-vs.-Kd+1 comparison, in that it says that such a
comparison is possible for every G ∈ Gd: in other
words, Td is more resilient than every other connected



d-regular graph at some point in Γd.
Our analysis in fact establishes a strengthening of this

result for Td — for every finite set H of connected d-
regular graphs, there is a distribution µH ∈ Γd on which
Td achieves strictly lower µH-risk than each member of
H. And this in turn yields a negative answer to a more
general version of Question (∗): When d > 2, there is
no two-element sufficient set of graphs for Γd.

Our results for d > 2 are based on a unifying tech-
nique, motivated by the construction of the distribution
µ = (ε, x, 1 − ε − x) used to compare Kd+1 and Td
above. The technique is based on using power series
approximations to study the µ-risk for µ in the vicinity
of particular threshold distributions; roughly speaking,
it works as follows. We focus on cases in which the
distribution µ concentrates almost all of its probability
on a single threshold `max and the remaining probability
is divided up over values j < `max. The random draw
of a threshold from µ in this case can be treated as a
small perturbation of the fixed threshold distribution in
which every node gets threshold `max and no nodes fail.
A given node’s failure probability can then be expressed
using a power series in the variables {µ(j) | j < `max}
and the power series coefficients for different graphs
provide enough information to compare them according
to µ-risk when the probabilities {µ(j) | j < `max} are
sufficiently close to zero. The computation of the power
series coefficients then reduces to a counting problem
involving certain partial assignments of thresholds to
nodes of G.

In addition to their role in our analyses, we believe
that small perturbations of a single fixed threshold are
a very natural special case to consider for the threshold
cascade model. Specifically, let Γhd(x) ⊆ Γd be the set
of distributions in Γd such that µ(0) > 0, µ(j) < x for
j < h, and µ(j) = 0 for j > h. (In other words, most of
the probability mass is concentrated on h, and the rest
is on values below h.) Threshold distributions in Γhd(x)
for small x > 0 correspond to scenarios in which all
nodes begin with a fixed level of “health” h, and then
a shock to the system causes a small fraction of nodes
to fail, and a small fraction of others to be weakened,
with positive thresholds below h. The study of µ-risk
on Γhd(x) corresponds simply to the question of which
networks are most resilient to the effect of such shocks.

Overall, then, we believe that the techniques devel-
oped here suggest avenues for further progress on a
set of basic questions involving the threshold cascade
model, including sharper comparisons of the µ-risk
between different graphs, and how these comparisons
depend both on µ and on the underlying graph structure.

2. DEFINITION OF THE MODEL

In the threshold cascade model, there is a graph
G (possibly infinite) in which each node v randomly
samples a label `(v) ∈ N. Given a labeling ` of graph
G, we define a subset S ⊆ V (G) to be failure-stable if
every node v 6∈ S has strictly fewer than `(v) neighbors
in S. We define the set of failed nodes Φ (G, `) to be
the intersection of all failure-stable node sets.

Given a graph G with root vertex r, and a distribution
µ on node labels, we define the root failure probability
to be the probability that r ∈ Φ (G, `) when ` is ran-
domly sampled by assigning each node an independent
label with distribution µ. We denote the root failure
probability by fµ(G, r).

It is not hard to see that this definition of Φ (G, `)
is equivalent to the one we used in the introduction as
stated by the following lemma.

Lemma 2.1. The set Φ (G, `) is failure-stable. It is also
the union of the infinite sequence of sets Φ0 (G, `) ⊆
Φ1 (G, `) ⊆ · · · defined inductively by specifying that
Φ0 (G, `) = {v | `(v) = 0} and Φi+1 (G, `) =
{v | Φi (G, `) contains at least `(v) neighbors of v}.
It is also equal to the set of all nodes v ∈ V (G) such
that v ∈ Φ (G0, `) for some finite subgraph G0 ⊆ G.

3. THE CASE d = 2

In this section, we specialize to 2-regular undirected
graphs G. For any such graph, one can define a permu-
tation R of the vertex set such that for every v ∈ V (G),
the set of neighbors of v is {R(v), R−1(v)}. The
following algorithm ROOTFAIL processes a labeling `
of G and outputs “fail” if and only if the root vertex
r belongs to Φ (G, `). The algorithm works as follows.
First it inspects the label `(r): if this is not equal to
1 or 2, then it halts instantly and outputs “fail” if and
only if `(r) = 0. Otherwise, find the least i such that
Ri(r) 6= 1 and the least j such that R−j(r) 6= 1. Let
`+ = `(Ri(r)), `− = `(R−j(r)). If i is undefined, then
set i = ∞ and `+ = 2. Similarly, if j is undefined
then set j =∞ and `− = 2. Now, output “fail” unless
`(r) exceeds the number of occurrences of 0 in the
multiset {`+, `−}. Define the length of an execution of
this algorithm to be equal to i+j. Note that if i =∞ or
j =∞, the algorithm ROOTFAIL will not actually halt.
For this reason, an actual implementation of ROOTFAIL
would have to be more careful to inspect the vertices in
interleaved order — R(r), R−1(r), R2(r), R−2(r), . . .
— until it can prove that the root must fail. Such
an implementation is not guaranteed to halt, but when
processing any labeling ` such that r ∈ Φ (G, `) it is



guaranteed to halt after a finite number of steps and
output “fail”.

The key to analyzing the root failure probability
in 2-regular graphs is the following observation: there
is a probabilistic coupling of the labelings `P of the
infinite path P and the labelings `C of the n-cycle
C = Cn, such that for every sample point at which
ROOTFAIL(P, `P ) has execution length less than n,
ROOTFAIL(C, `C) also has execution length less than
n and the two executions are identical.

We now define some events on the sample space
of this coupling. For any k, let Ek denote the event
that ROOTFAIL(P, `P ) has execution length at least
k, and let pk = Pr Ek. Let FP denote the event
that r ∈ Φ (P, `P ) and let FC denote the event that
r ∈ Φ (C, `C), and let δn denote the difference in condi-
tional probabilities Pr(FP |En)−Pr(FC |En). Since the
executions of ROOTFAIL(P, `P ) and ROOTFAIL(C, `C)
are identical on the complement of En, we find that

Pr(FP )− Pr(FC) = pnδn.

We now proceed to compute the conditional probabil-
ities Pr(FP | En) and Pr(FC | En). Let s, t, u denote
the label probabilities µ(0), µ(1), µ(2), respectively. Let
q = s

1−t , which is the conditional probability that the
label of any node is 0, given that its label is not 1. Then
we have

Pr(FP | En) =
t

t+ u

(
1− (1− q)2

)
+

u

t+ u
· q2.

The first term on the right accounts for the case that
`(r) = 1 and the second term accounts for the case
that `(r) = 2. After some manipulation — pulling
out

(
t

t+u

)
q from the first term and

(
u
t+u

)
q from the

second one — we obtain the formula Pr(FP | En) =
q + t−u

t+u

(
q − q2

)
. To compute Pr(FC | En), note that

when En occurs, the root’s label is either 1 or 2, and
at most one of the remaining labels is not equal to 1.
Furthermore, in any such labeling of C, the root fails if
and only if one of the other n− 1 nodes has label 0.

Thus, pn = (t + u)[tn−1 + (n − 1)(1 − t)tn−2] and
Pr(En ∩ FC) = (t + u)(n − 1)stn−2. By Bayes’ Rule
we see that Pr(FC | En) is equal to

(n− 1)s

t+ (n− 1)(1− t)
= q

(
1− t

t+ (n− 1)(1− t)

)
,

and hence

δn =
t− u
t+ u

(
q − q2

)
+

qt

t+ (n− 1)(1− t)
.

Now we observe that in the expression Pr(FP ) −
Pr(FC) = pnδn, both factors on the right-hand side

are decreasing functions of n. Consequently, when they
are both positive, their product is a decreasing function
of n. In other words, if an n-cycle is better than an
infinite path, then an (n− 1)-cycle is better still.

We have thus proved the following.

Theorem 3.1. For each µ ∈ Γ2, at least one of the
3-cycle or the infinite path has minimum µ-risk over all
graphs in G2.

4. COMPUTING FAILURE PROBABILITIES VIA
POWER SERIES

When d > 2, the method of the preceding section
does not appear to be applicable. In effect, since the
breadth-first search of such a graph builds a tree which,
at any stage of the search, may have more than two
leaves (in fact, an unbounded number of them) there
are many more opportunities for correlation as different
leaves of the tree are discovered to refer to the same
node of G. For this reason, an analysis along the lines of
Section 3 seems hopeless. Instead we specialize to cases
in which the distribution µ concentrates almost all of
its probability on a single label `max and the remaining
probability is divided up over labels j < `max. We then
express the µ-risk as a power series in the probabilities
{µ(j) | j < `max}, which allows us to compare
different graphs according to their low-degree power
series coefficients.

4.1. Definitions
We now present the definitions that we need, followed

by a description of the power series for the root failure
probability and its convergence properties. Throughout
this section, we will illustrate the definition on a very
simple graph: a 3-node path, with the root r placed at
the middle node, and we let v and w be the two other
(leaf) nodes of the path.

Throughout this section and the following ones,
we will assume that labels take values in the set
{0, . . . , `max} for some fixed positive integer `max. For
purposes of our example, we assume that `max, where
most of the probability is concentrated, is equal to 2:
µ(0) = s and µ(1) = t are small positive numbers, and
µ(2) = 1− s− t is close to 1.

We will compute failure probabilities by working
with partial node labelings λ, in which labels are as-
signed to only some of the nodes, i.e., a partial function
λ from V (G) to {0, . . . , `max}. Its domain of definition,
Dom(λ), is the set of all v ∈ V (G) such that λ(v) is
defined; when Dom(λ) = V (G) we refer to λ as a full
labeling or simply a labeling.

We say that a partial labeling λ is an explanation of
root failure (ERF) if the root fails in every full labeling



of G that agrees with λ on Dom(λ). We say that λ is a
minimal explanation of root failure (MERF) if it is an
ERF, and every proper sublabeling of λ is not an ERF.
Note that Dom(λ) is a finite set whenever λ is a MERF,
by Lemma 2.1.

Thus, on the three-node path with r in the middle,
there are four MERFs: (a) assigning 0 to r; (b) assigning
1 to r and 0 to v; (c) assigning 1 to r and 0 to w; and (d)
assigning 0 to v and w. We can think of partial labelings
as events in the full sample space of labelings, and (a)-
(d) are thus four events that cover the event that r fails.
Hence the probability r fails is bounded above by the
sum of the probabilities of these four events, which is
s+ 2st+ s2.

To get the precise failure probability of r, we need
to incorporate inclusion-exclusion terms arising from
overlaps in these four MERFs. In our example, there are
two distinct labelings that correspond to such overlaps:

(i) assigning 0 to all three nodes: this arises when
events (a) and (d) both occur, so it contributes −s3

to the probability.
(ii) assigning 1 to r and 0 to both v and w: this

arises when any two out of (b), (c), and (d) occur,
and also when all three occur. By the inclusion-
exclusion formula, this contributes −3s2t+ s2t =
−2s2t to the probability, with the first term com-
ing from two-way overlaps and the second term
coming from the three-way overlap.

Putting all this together, we get the root failure proba-
bility for the small example: s+ 2st+ s2 − s3 − 2s2t.

MERFS give rise to such overlaps when they are
compatible. We sat that two partial labelings λ1, λ2 are
compatible if λ1(v) = λ2(v) for every v ∈ Dom(λ1)∩
Dom(λ2). The union of two compatible partial labelings
λ1, λ2 is the unique partial function λ whose domain is
Dom(λ1)∪Dom(λ2) and which agrees with each of λ1

and λ2 on its respective domain. For notational reasons,
it will be convenient to make the union operation into
a binary operation that is defined for any pair of partial
labelings, not only for compatible pairs. To do so, we
define the set Λ to be a set consisting of all partial
labelings, together with one special element denoted
⊥ that is interpreted to be incompatible with every
element of Λ, including itself. We extend the union
operation ∪ to a binary operation on Λ by specifying
that λ1∪λ2 =⊥ when λ1 and λ2 are incompatible. For
a partial labeling λ, we define E(λ) to be the set of all
full labelings that extend λ; note that E(⊥) = ∅, and
that for every two partial labelings λ1, λ2 we have the
relation E(λ1) ∩ E(λ2) = E(λ1 ∪ λ2).

For the inclusion-exclusion formula, we’ll need to

think about finite unions of MERFs which we’ll call
UMERFs. For graph G with root vertex r, we will
denote the set of all MERFs by M(G, r) and the set of
all UMERFs by U(G, r). We will sometimes abbreviate
these to M, U when the meaning is clear from context.

We can now describe the plan for arbitrary graphs,
including infinite ones, when µ(j) = sj are small
numbers for j < `max, and µ(`max) = 1−

∑`max−1
j=0 sj .

We first show that when `max > d/2, for any vector of
natural numbers i = (i0, i1, . . . , i`max−1), there are only
finitely many MERFs that assign ik nodes a label of k,
for k = 0, . . . , `max − 1. Moreover, we can write the
root’s failure probability as a multivariate power series
of the form

∑
i ais

i0
0 s

i1
1 · · · s

i`max−1

`max−1 , and this power
series has a positive radius of convergence. From this
we compare failure probabilities in different graphs by
enumerating power series terms until a difference arises.

4.2. A power series for the root failure probability

We make the set of all labelings ` into a probability
space by declaring the labels {`(v) | v ∈ V (G)} to be
independent random variables with common distribution
µ. The measurable sets in this probability space are the
σ-field generated by the sets E(λ), where λ ranges over
all partial labelings of G.

By Lemma 2.1, whenever the root fails there is a
MERF that explains the failure, i.e. the event r ∈
Φ (G, `) is the union of the events E(λ) for λ ∈M. Let
P∗ denote Pr(r ∈ Φ (G, `)). Since M is a countable set,
we can choose an arbitrary one-to-one correspondence
m : N → M. Writing Pn = Pr (

⋃n
i=1 E(m(i))), we

have P∗ = limn→∞ Pn.
Each of the probabilities on the right-hand side can

be expanded using the inclusion-exclusion formula,
resulting in the following expression for Pn:
n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n

Pr (E(m(i1)) ∩ · · · ∩ E(m(ik)))

=

n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n

Pr (E(m(i1) ∪ · · · ∪m(ik))) . (1)

The right-hand side of (1) is easy to evaluate: using
variables si (i = 0, . . . , `max) to denote the values si =
µ(i), the probability of the event E(λ) for any partial
labeling is given by

Pr(E(λ)) =
∏

v∈Dom(λ)

sλ(v)
∆
= sλ, (2)

where this is taken as the definition of sλ.
Combining (1) and (2), and regrouping the terms we

get the following lemma.



Lemma 4.1.

Pn =
∑
λ∈U

n∑
k=1

(−1)k+1ak,nλ sλ. (3)

Here, ak,nλ for a UMERF λ and integers 1 ≤ k ≤ n, is
defined as the number of k-tuples (i1, . . . , ik) such that
1 ≤ i1 < · · · < ik ≤ n and λ = m(i1) ∪ · · · ∪m(ik).

4.3. Convergence of the power series

To take the limit as n → ∞ and obtain a well-
defined power series, it is necessary to have a finite-
ness theorem that justifies that the coefficient of sλ
eventually stabilizes as n grows. In fact, in order for
the power series to have positive radius of convergence
the coefficients must grow no faster than exponentially.
Proving such bounds requires bounding the number
of UMERFs of a given size. In general this is not
possible: for some graphs and some settings of the
parameter `max, the number of UMERFs of a specified
size is not even finite. As a simple example, consider
an infinite path and `max = 1; there are infinitely many
MERFs λ consisting of a single node labeled with 0.
More generally, for any even d, consider a graph G
formed by taking an infinite sequence of independent
sets (. . . , S−2, S−1, S0, S1, S2, . . .), each of size d/2,
and joining each v ∈ Si to every w ∈ Si−1 and every
w′ ∈ Si+1. G has degree d, and labeling all the nodes in
any Si defines a MERF λ with i(λ) = (d/2, 0, . . . , 0).

The remainder of this section is devoted to specifying
some sufficient conditions under which the right-hand
side of Equation (3) can be rewritten as a power series
with positive radius of convergence. For any partial
labeling λ, we define its size |λ| = |Dom(λ)| to be
the number of nodes it labels. We begin by identifying
some sufficient conditions under which we can assert
that for every partial labeling λ, the number of nodes
that are guaranteed to fail in every labeling extending
λ is at most O(|λ|).

Lemma 4.2. Suppose we are given a graph G, a default
threshold `max, and a partial labeling λ. Let λ be the
full labeling that extends λ by assigning label `max to
each node not labeled by λ, and let F = Φ

(
G,λ

)
.

1) If G is d-regular and d < 2`max then |F | is
bounded above by (d+ 1) |λ|.

2) Suppose that for every node v of G, every con-
nected component of G \ {v} contains strictly
fewer than `max neighbors of v. Then |F | < 2 |λ|.

The proof, given in the full version, tracks the failures
of nodes in a canonical order, and uses a potential
function to show that every time a node fails that is

not labeled by λ, it “costs” a lot as measured by the
potential. For Part 1 we use a potential function equal to
the number of edges connecting a failed node to a non-
failed node; for Part 2, we use a potential function equal
to the number of components in the subgraph induced
on failed nodes.

The next lemma provides a simple method for bound-
ing the number of UMERFs of size z by an exponential
function of z. Its proof proceeds by simply bounding the
number of connected sets of nodes containing r of at
most a given size, and the number of possible labelings
of such a set.

Lemma 4.3. Suppose, for a given graph G and default
threshold `max, that there exists a constant c such that
every partial labeling λ satisfies |Φ

(
G,λ

)
| ≤ c |λ|.

Then for every z, the number of UMERFs of size z is
at most (d + 1)3cz . In particular, this upper bound is
at most (d + 1)3(d+1)z whenever one of the sufficient
conditions in Lemma 4.2 holds.

Assume for the remainder of this section that G and
`max satisfy one of the two sufficient conditions in
Lemma 4.2; thus, the hypothesis of Lemma 4.3 holds
with c = d+1. The conclusion of Lemma 4.3 is already
enough for us to be able to express the series on the
right-hand side of Equation (3) via a more useful index-
ing. First, for any UMERF λ, let i(λ) denote the vector
of natural numbers i = (i0, i1, . . . , i`max) such that λ
assigns exactly ik nodes a label of k. The corresponding
event E(λ) has probability sλ = si00 s

i1
1 · · · s

i`max

`max
, a

quantity we will abbreviate as si.
For any vector of natural numbers

i = (i0, i1, . . . , i`max
), let |i| =

∑`max

k=0 ik; the
number of UMERFs λ with i(λ) = i is bounded by the
expression in Lemma 4.3, with z = |i| and c = d + 1.
Moreover, any MERF λ′ that appears in a union of
MERFs forming λ must have a vector i(λ′) that is
coordinate-wise dominated by i(λ), and hence Lemma
4.3 implies that only a finite set of MERFs can appear
in unions that form λ. It follows that the sequence
of coefficients ak,nλ eventually stabilizes as n → ∞
— that is, for every λ, k there is an integer akλ and a
threshold n0 such that ak,nλ = akλ for all n ≥ n0.

Thus we can group together all UMERFs λ with
i(λ) = i and write

Pn =
∑
i

∑
λ∈U
i(λ)=i

∑
k

(−1)k+1akλs
i =

∑
i

ais
i, (4)

where the right-hand side should be taken as the defini-
tion of ai, and the grouping by i in the sum on the right-
hand side is justified by the fact that in the preceding



triple summation, the sums over λ and k range over
finite sets.

If we can show that ai depends only exponentially on
|i|, this will establish that the power series has a positive
radius of convergence. We observe that if the third
summation weren’t present in Equation (4), and instead
we only were summing over k = 1 (corresponing to
MERFs), then such an exponential upper bound would
follow directly from Lemma 4.3. It follows that to show
an exponential upper bound on |ai|, it is sufficient, for
each fixed UMERF λ with i(λ) = i, to show that
|
∑
k(−1)k+1akλ| is bounded above by an exponential

function of |i|.
To do this, we consider the (potentially very large)

set of all MERFs λ1, . . . , λm that can appear in a union
forming λ. Let Dom(λ) = D, with |D| = n, and
Dom(λj) = Dj . For each subset of k of these MERFs
whose union equals D, we get a term (−1)k+1 in the
sum we are bounding. We would like to show that the
absolute sum of all these terms is bounded above by
an exponential function of n, but since there could be
many more than this many terms in the sum, we need an
argument that actually exploits the cancellation among
terms of the form (−1)k+1, rather than naı̈vely treating
each as potentially having the same sign.

The upper bound we need follows from our next
lemma. Its proof uses a careful induction on the size
of the set D, given in the full version.

Lemma 4.4. Let D be an n-element set, and let
D1, . . . , Dm be (not necessarily distinct) subsets of D.
Let C be the collection of all subsets J ⊆ {1, . . . ,m} for
which

⋃
j∈J Dj = D. Then

∣∣∑
J∈C(−1)|J|

∣∣ ≤ 2n. (The
crucial point is that the right-hand side is independent
of m.)

Combining these bounds, we see that |ai| is bounded
above by an exponential function of |i|, and hence:

Theorem 4.5. If d < 2`max, the power series in
Equation (4) has a positive radius of convergence. The
power series also has a positive radius of convergence if
for every node v, every connected component of G\{v}
contains strictly fewer than `max neighbors of v.

5. COMPARING CLIQUES, TREES, AND TREES OF
TRIANGLES

5.1. Comparing Td to Kd+1

In the introduction, we noted that it is easy to
identify two distinct settings of the parameters for µ
for which Kd+1 has uniquely optimal µ-risk among
connected d-regular graphs. First, when `max = 1, the
probability the root fails is monotonic in the size of

the connected component that contains it, and Kd+1

uniquely minimizes this for connected d-regular graphs.
But Kd+1 is also uniquely optimal for larger values of
`max < d, when µ assigns every label to be either 0 or
`max. Indeed, in this case, the only way the root can fail
in Kd+1 is if it receives a label of 0, or at least `max of
its neighbors receive a label of 0. This event also causes
the root to fail in any connected d-regular graph G, but
when G 6= Kd+1 there are other positive-probability
events that also cause the root to fail, so again Kd+1 is
uniquely optimal.

As a first application of our power-series technique,
we now show that there are parameter settings for which
Td has lower root failure probability than Kd+1. For this
comparison, we consider µ such that `max = 2, and
µ(0) = s, µ(1) = t, where s and t are small quantities
that will be defined precisely later. Observe that when
`max = 2, Td satisfies the hypothesis of Lemma 4.2,
Part 2, and hence its power series has a positive radius
of convergence. The power series for Kd+1 is actually
a polynomial in s and t, since Kd+1 is a finite graph,
so its radius of convergence is infinite.

Let us work out some of the low-degree terms for Td
and for Kd+1. For both Td and Kd+1, the coefficient
on the term s is 1, corresponding to the MERF in
which the root gets labeled 0. For Td, the coefficient
on the term st is d, corresponding to MERFs in which
the root gets labeled 1 and any one of the root’s d
neighbors gets labeled 0. The same coefficient for Kd+1

is d2, corresponding to MERFs in which any neighbor
of the root gets labeled 0 and any other node gets
labeled 1. There are no inclusion-exclusion corrections
contributing to any of these coefficients.

Now, suppose we set s = t3. Then the power series
for the root failure probability in Td is t3 +dt4 +O(t5),
whereas the power series for the root failure probability
in K4 is t3 + d2t4 +O(t5). The O(t5) estimate of the
error term is valid inside the power series’ radius of
convergence. Hence, for t sufficiently small and s = t3,
we find that f∗µ(Td) < f∗µ(Kd+1).

We have thus shown

Theorem 5.1. For each d ≥ 3, there exists a µ ∈ Γd
for which Td has strictly lower µ-risk than Kd+1.

5.2. Comparing ∆d to Kd+1 and Td
We now show that when d > 2, the graphs

{Kd+1, Td} do not form a sufficient set for Γd. We do
this by establishing the following theorem.

Theorem 5.2. For each d ≥ 3, there exists a µ ∈ Γd
for which the d-regular tree of triangles ∆d has strictly
lower µ-risk than either Td or Kd+1.



(a) Degree 3 (b) Degree 4

Figure 2. The tree of triangles ∆d for d = 3 and d = 4.

We first define ∆d precisely, beginning with the
following more general class of graphs that contains
it. Given a graph K consisting of a disjoint union of
cliques, we define ∆(K), the tree of cliques of neigh-
borhood type K, to be the unique graph G satisfying
the following two properties: (i) for any node v, the
induced subgraph on its neighbors is isomorphic to K;
and (ii) if w and w′ are both neighbors of v, but (w,w′)
is not an edge of G, then w and w′ belong to different
components of G \ {v}. (Note that if K is has more
than one component, then G is infinite.) Finally, we
define the d-regular tree of triangles ∆d to be the graph
∆(K), where K consists of d/2 disjoint edges when
d is even, and (d − 1)/2 disjoint edges together with
an isolated node when d is odd. Intuitively, ∆d consists
of triangles pasted together in a tree-like fashion, with
each node also incident to an additional edge when the
degree is odd. We draw a small portion of ∆d’s tree-like
structure, for the cases d = 3 and d = 4, in Figure 2.

We construct the distribution µ in Theorem 5.2 from
a small perturbation of the fixed threshold `max = 3.
To analyze the root failure probability in ∆d in this
case, we first observe that its power series has a positive
radius of convergence for all d ≥ 3, since ∆d satisfies
the hypothesis of Lemma 4.2, Part 2. (A connected com-
ponent of ∆d \ {v} can contain at most 2 neighbors of
v.) Thus, we can compare the root failure probabilities
in ∆d, Kd+1, and Td by comparing low-degree terms in
their power series, as we did when we compared Kd+1

with Td in Section 5.1. We present the calculations for
this argument in the full version.

6. COMPARING Td TO AN ARBITRARY d-REGULAR
GRAPH

In Section 5.1 we compared f∗µ(Td) with f∗µ(Kd+1),
for d ≥ 3, when µ is a small perturbation of `max = 2
— that is, when (µ(0), µ(1), µ(2)) = (s, t, 1−s−t). We
saw that the tree has strictly lower µ-risk than the clique
when t is sufficiently small and s is sufficiently small
relative to t. Generalizing this, the same power-series
technique can be used to show that for any connected

d-regular graph other than Td, one can find a setting of
s, t > 0 such that f∗µ(Td) < f∗µ(G). This will establish
the following theorem, which is the main focus of the
present section.

Theorem 6.1. For each d ≥ 3 and each graph G ∈ Gd,
there exists a µG ∈ Γd for which Td has strictly lower
µG-risk than G.

We begin with some facts that apply to all degrees
d ≥ 3. After this, we separately handle the cases of
d = 3 and d > 3. Focusing on d = 3 first allows us
to use the condition that d < 2`max = 4 and hence
ensure that the root failure probability in the graph G
has a power series expansion with a positive radius of
convergence. After analyzing the case of d = 3, we
sketch the extension of the proof to d > 3, with the
details deferred to the full version.

Since G is a connected graph that is not a tree, it
has finite girth L. Let r be a node of G that belongs to
an L-cycle, and let r′ be an arbitrary node of T = Td.
Applying the results of Section 4, we will be bounding
the probabilities fµ(G, r) and fµ(T, r′) using sums
of monomials sλ indexed by UMERFs λ. Any such
monomial sλ = sitj has i ≥ 1: all MERFs have at least
one threshold-zero node, since otherwise the failed set
is empty. We will be setting s = tL � 1, so that all the
monomials whose magnitude is greater than t2L−1 are
of the form stj (0 ≤ j ≤ L − 2). Focusing, therefore,
on UMERFs λ having i(λ) = (1, j), we establish the
facts summarized in the following lemma.

Lemma 6.2. Let G be any d-regular graph of girth L.

(1) If λ is any UMERF in G such that i(λ) = (1, j),
where 0 ≤ j ≤ L− 2, then λ is a MERF.

(2) When 0 ≤ j < L − 2, there is a one-to-
one correspondence between MERFs λ such that
i(λ) = (1, j) in G and in T = Td.

(3) When j = L− 2, G has strictly more MERFs with
i(λ) = (1, j) than does T .

For the proof, given in the full version, we proceed
by first showing that when j < L− 2, the failed nodes
under any MERF λ must consist entirely of nodes in
Dom(λ), or else they would contain a cycle of length
< L. We then argue that when j = L − 2, labeling
all but one node on a shortest cycle in G can produce
MERFs that have no analogues in T .

Now, when d = 3, we have d < 2`max, and hence
the power series for fµ(G, r) and fµ(T, r′) converge for
sufficiently small s and t. Thus the difference fµ(G, r)−
fµ(T, r′), may be expressed as

∑
i=(i,j)(a

G
ij − aTij)sitj

where aGij and aTij are the power series coefficients in (4)



for G and T , respectively. Let βij = aGij−aTij . Grouping
the power series terms terms into those with Li+ j ≤
2L − 2 and those with Li + j ≥ 2L − 1, we find that
the first set of terms includes only pairs (i, j) such that
i = 1, 0 ≤ j ≤ L− 2, and by Lemma 6.2,∑
Li+j≤2L−2

βijs
itj = β1,L−2st

L−2 ≥ (L− 1)t2L−2.

Recall, from Lemmas 4.3 and 4.4, that the number
of UMERFs λ such that i(λ) = (i, j) is bounded
above by (d + 1)3(d+1)(i+j) and that the coefficient∑
k(−1)k+1akλ for each of them is bounded by 2i+j

in absolute value. Thus, letting D = (d+ 1)3(d+1),∣∣∣∣∣∣
∑

Li+j≥2L−1

βijs
itj

∣∣∣∣∣∣ ≤
∞∑

k=2L−1

∑
Li+j=k

2 · (2D)i+jtLi+j

<

∞∑
k=2L−1

2k(2Dt)k

<

∞∑
k=2L−1

(4Dt)k =
(4Dt)

2L−1

1− 4Dt
,

where the last line is justified as long as the denominator
is strictly positive. By choosing t sufficiently small, we
can ensure not only that the denominator is strictly
positive but that the quantity on the last line is less
than t2L−2. Then, the positive (L−1)t2L−2 contribution
from the low-degree terms in the power series more than
offsets the possibly negative contribution from the high-
degree terms, proving fµ(G, r) > fµ(T, r′), as claimed.

When d > 3, we need to be more careful, because the
power series for G need not converge. Recall, however,
that the power series for Td still converges, and it turns
out to be sufficient to compare the full power series for
Td with a polynomial representing the probability of the
union of a sufficiently large set of MERFs in G. The
details are given in the full version.

6.1. A Connection to Sufficient Sets

A strengthening of Theorem 6.1 has a consequence
for sufficient sets, as we now discuss. (Recall that a
set of graphs H ⊆ Gd is a sufficient set for Γd if for
each µ ∈ Γd, at least one member of H achieves the
minimum µ-risk over all graphs in Gd.) We first describe
the relevant strengthening of the theorem. Notice that
the proof of Theorem 6.1 in fact shows something
stronger than was claimed. If we have any finite set
of graphs H ⊆ Gd, none of which is Td, then we can
define L to be the maximum girth of any graph in H.
Using this value of L, we can define a distribution µ just
as before, and the analysis in the proof of Theorem 6.1
then directly establishes the following.

Theorem 6.3. For every finite set H of connected d-
regular graphs, there is a distribution µH ∈ Γd for
which Td achieves strictly lower µH-risk than each
member of H.

In other words, rather than simply being more re-
silient than any single other graph G at some point in
Γd, the tree Td is in fact simultaneously more resilient
than any finite set of other graphs at some point in Γd.

From this stronger form of the result, we obtain the
following immediate consequence.

Theorem 6.4. When d ≥ 3, there is no sufficient set of
size 2 for Γd.

Proof: If there were such a set H ⊆ Gd of size
2, then it would have to contain Kd+1, since Kd+1

uniquely minimizes the µ-risk for some distributions
µ ∈ Γd. The other graph in H can’t be Td, since by
Theorem 5.2 there are µ for which ∆d has strictly lower
µ-risk than both Kd+1 and Td. But if the other graph in
H were some G 6= Td, then by Theorem 6.3 we could
find a µ for which Td has lower µ-risk than both Kd+1

and G, and so this is not possible either.
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